motion of the jet head is independent of the behavior of the remainder and, hence, of the nature of the change
in pressure in the fuel system, except for the earliest stage of the process.

At higher pressures in the medium (7-10 atm or more) the transmission of information along the jet
becomes reliable and the rear parts of the jet begin to affect the advance of the head, In this sense we use the
term "property of longitudinal elasticity." It should also be noted that at pressures in the medium >5-7 atm
the development of large-scale inhomogeneities dividing the jet into sections is not observed,
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LOCALIZED THERMAL STRUCTURE IN MEDIUM
WITH BULK HEAT ABSORPTION

L. K. Martinson UDC 536,24

Investigations of nonlinear processes of the diffusion type [1-6] have revealed several qualitatively new
features of the course of such processes in comparison with linear processes.

In particular, in heat-conduction processes nonlinearity can be responsible for such an unusual property
as thermal inertia. In the wide sense the property of thermal inertia means a finite velocity of prepagation of
thermal perturbations, when the perturbations propagate in a nonlinear medium in the form of heat waves with
a finite velocity of motion of the front.

The property of thermal inertia is manifested in a qualitatively new form when the thermal perturbations
are spatially localized, In this case the front of the thermal perturbation, propagating from the scurce with
finite velocity, penetrates only a finite depth into the medium even in an infinite period of time, As was shown
in [7-10] the nonlinear spatial localization of thermal perturbations can be due to the effect of bulk absorption of
thermal energy, the rate of which depends on the temperature.

One of the most interesting regimes of spatial localization of thermal perturbations is the stable locali~
zation regime [L1], The heat wave front in this localization regime remains stationary, and the size of the per-
turbation region does not vary with time. Inthis case the localized heat pulse is self-insulated from the sur-
rounding space and evolves into a space region of constant size, As an example of realization of this type of
nonlinear heat conduction regime we consider the evolution of aheat pulse in a medium of constant density p,
heat capacity ¢, and thermal conductivity k in the presence of bulk absorption of thermal energy in it, the rate
of which is related to the temperature by a power law and depends explicitly on the time ~ it decreases expo-
nentially with time with a characteristic relaxation time 7. In the one-dimensional case this process is repre-
sented by the following parabolic quasilinear equation with a nonlinear lowest terms:

Moscow. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 2, pp. 70-73, March-
April, 1981, Original article submitted March 5, 1980,

0021-8944/81/2202-0199 $07.50 © 1981 Plenum Publishing Corporation 199



0 Buldt = &k Puldz® — gon” exp(—1/7). 1)
Here q; =const> 0, and 0<v <1,

We will assume that the initial temperature distribution corresponding to the thermal structure of a soli-
tary beat pulse is represented by a nonnegative continuous function uy(x), which vanishes outside the interval
(-1, +1), where I<+=, As the characteristic temperature U of the problem we select the maximum temperature
of the thermal structure at the initial time,

Introducing the dimensionless quantities

u = ulU, o’ = z/l, t' == at/l?, @)
T = at/P, T1 = qlY/kU*~" (a = k/pc)
and omitting the dashes from the dimensionless quahtities, we rewrite Eq. (1) in the form
A/t = Bulfa® —Tuv exp{—t/T), 0 << v < 1. ()
Let the parameters of the heat pulse at the initial time be such that

f—w. . at (- v
S e SRV § SR U A
T —5~ an T

We will seek the solution of Eq. (3) in this case as a solution with separable variables

u(t, z) = o()h(z), (4)
and select the relation ¢ (t) in the form
1
R ) i i ) ' (5)
v = [2(1-v)2] eXP( (A—wi

Then, substituting (4), taking (5) into account, in Eq, (3) we obtain for the coordinate function ¥(x) the nonlinear
differential equation

(6)

nz
(1 —w)?

d21|) v
el i

b= 0.

Equation (6) can be integrated and its particular solution has the form of a function periodic in x
. 1

~ . 2(1——\:)2 z’fim
"p(x)“'[nz(uv)cos 2] ’

which vanishes at the points X =x, =#(2n+1), n=0, 1... . We note also that at these points Z'F'(xn) ='175"(xn) =0,
Taking this into account, and also the fact that Eq. (6) has a trivial zero solution, we write the generalized
solution of Eq. (6) w(x)= C*(RY), joining at points x=+ 1 two of these solutions:

E‘(J’)v Tes (_ 11 + 1)7

Y@ =10 e RN (—1, + 1),

Returning to dimensional quantities and taking (2) into account we find finally that if the initial tempera-

ture distribution in the medium has the form
1

U [cosz%zl—]ﬁ, re(—1, +1), (0

01 CLERI\(— l’ +l)7
while the size of this thermal structure ! {the halfwidth of the heat pulse at the initial time) and its amplitude
U are connected with the absorption parameters q,, 7, and v by the relations

. 1
A {27(,1 (11— v)};:-;’

1—v T lpc (T w)

Uy ((C) =

l=n ]/

the solution of Eg. (1) with initial distribution (7) has the form

1

4 5 T ]'__' . '
Uexp [— —T—(l-j—)—] [C()s le V.o ze(—1, + D), (8)
. ze RIN(—1, + ).

u(t, z) =

1

The solution (8) represents the evolution of a localized heat puise (7) in 2 medium with bulk heat absorp-
tion. The nature of the evolution of such a heat pulse is unusual in that bulk heat absorption suppresses the heat
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Fig. 1

diffusion mechanism and the heat pulse evolves on a zero unperturbed background without alteration of the
width of the perturbation (region of space where u>0). In other words, the carrier of solution (8) does not
vary with time, The qualitative nature of the evolution of such a heat pulse is illustrated in Fig, 1.

We note that at the boundary points of the solution carrier x =+ [, i.e., at the stationary frontal points of
the heat pulse the physical conditions for continuity of the heat pulse are fulfilled at any instant. In addition, the
solution (8) has all the derivatives, prescribed by Eq. (1), continuous throughout, i.e.,in this sense it is a classi~
cal solution of Eq, (1), It is true that at points x =+ [ the higher-order derivatives with respect to x may be
discontinuous.,

Solution (8) with a stationary heat front does not contradict the conclusion of classical heat-conduction
theory — the velocity of propagation of thermal perturbation is infinite., This conclusion applies only fo pro-
cesses which are represented by a linear heat-conduction equation. Equation (1), however, is quasilinear and,
as was shown in [12], can have solutions with a finite velocity of propagation of the thermal perturbations (in
our case with zero velocity).

Thus, the obtained exact analytical solution of the quasilinear heat-conduction equation shows that in a
medium with bulk heat absorption, whose specific power is related to the temperature by a power law, there
may be thermal self-insulation of the structure, when the evolution of the thermal structure, owing to internal
heat conduction mechanisms, proceeds without alteration of the spatial dimensions of the perturbation region,
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